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For anisotropic particulate samples with scattering contrast ��n�2, the leading

asymptotic term of the scattering intensity, along a direction q̂ (� q=q) of

reciprocal space, is �4�2��n�2=q4�Pj�1=j�G;j��q̂�j�. Here, �G;j��q̂� denotes the

Gaussian curvature value at the points (labelled by j) of the interphase surface

where the normal is either parallel or antiparallel to q̂. If the Gaussian curvature

vanishes at, say, the �jth of these points, the corresponding contribution takes the

form C�j=q��j with 2 � ��j < 4, C�j and ��j being determined by the local behaviour of

the surface. However, the intensity detected by a counter pixel, with opening

solid angle �
�q̂0� along (mean) direction q̂0, asymptotically still behaves as

4�2��n�2S��
�q̂0��=q4, where S��
�q̂0�� is the area of that part of the interface

that has its normals inside �
�q̂0�.

1. Introduction

Sample inhomogeneities occurring on a length scale of 1±

1000 nm can usefully be investigated by small-angle scattering

(SAS) of X-rays (Guinier & Fournet, 1955; Glatter & Kratky,

1982) and neutrons (Kostorz, 1996; Feigin & Svergun, 1987) as

well as by light scattering (Lindner & Zemb, 1991). On this

scale, samples can often be depicted as consisting of two

homogeneous phases (Debye et al., 1957). When absorption

and inelastic effects are negligible, the scattering contrast

��n�2 is a real positive quantity and the wave vectors of

incoming (qin) and outgoing (qout) radiation have equal

modulus. Under these conditions, the scattering intensity I�q�
depends linearly on ��n�2 while its dependence on the scat-

tering vector q � �qin ÿ qout� is determined by the geometry

of the interphase surface. Actually, only the points closer than

2�=q to the sample interfaces contribute to the scattering

intensity [here, q � �4�=�� sin��=2� is the modulus of q while �
and � denote the scattering angle and the wavelength of the

incident radiation, respectively]. Since the thickness of these

regions decreases as q increases, the asymptotic behaviour of

the scattering intensity must depend on quantities related to

the local behaviour of the interfaces. Porod's law (Porod,

1951a,b; Debye et al., 1957) is a clear example of such a

property. Since the derivation of this basic result, the relations

existing between the asymptotic behaviour of the scattering

intensity and the interface geometry were investigated in

many papers. [For a brief review, see Ciccariello (1997).] These

analyses were, however, con®ned to the case of statistically

isotropic samples, where the observed intensity depends only

on q. Nowadays, intensities can easily be registered by two-

dimensional position-sensitive detectors, i.e. in dependence of

q, and anisotropic behaviour is frequently observed. Thus, it is

worthwhile to look for a generalization of Porod's law to

anisotropic samples. This problem was solved quite recently

for the case of particulate samples with smooth and strictly

convex particles (Ciccariello et al., 2000). This paper, referred

to as paper I hereinafter, showed that the Porod coef®cient,

viz the coef®cient of the qÿ4 term, is proportional to the sum

of the reciprocal Gaussian curvatures at all the points of the

interface where the normals are either parallel or antiparallel

to q̂ � q=q, the direction of the considered scattering vector.

In the present paper, this result will be generalized to

particles with non-convex surfaces. They may also include

edges, vertices and planar facets. The paper is organized as

follows. x2 shows that the leading asymptotic term of I�q� is

determined by the behaviour of the particle surfaces around

those points ± called q̂-tangency points ± where the tangent

planes are orthogonal to q̂. The three kinds of q̂-tangency

points, i.e. elliptic, hyperbolic and parabolic, will be analysed

in xx2.1, 2.2 and 2.3. x3 shows how to derive the leading

asymptotic term of I�q� from the results reported in x2. The

changes required by the ®niteness of experimental angular

resolution are discussed in x4. Appendices A and B are

devoted to some detailed applications.

2. General relations

When scattering is elastic, the scattering intensity I�q� is the

square modulus of the Fourier transform of n�r�, the scattering

density (SD) function of the sample. For SAS, n�r� can be

identi®ed with �n�r�, the average of n�r� evaluated inside

spheres with a radius of a few aÊngstroms. For most of the

samples ± noteworthy exceptions are fractal samples (Martin

& Hurd, 1987), which will not be considered in the following ±

�n�r� turns out to be fairly close to a discrete-valued function
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(Debye et al., 1957), denoted by nD�r� and sometimes referred

to as Debye's idealized SD.1 Denoting the values of nD�r� by

n1; . . . ; nN , the sample regions where the SD is equal to nj

de®ne the jth phase and the corresponding set, generally

formed by disjoint sets with closed boundaries, will be denoted

by V j .

We shall con®ne ourselves to particulate two-phase samples.

Thus, consider a sample consisting of M particles and denote

by Vp the sample region occupied by the pth particle. Vp is

fully characterized by function �p�r�, equal to one or zero

depending on whether the tip of r lies inside or outside particle

p. The sample region occupied by the particles is V1 � [M
p�1Vp

and will be called phase 1. It is characterized by function �V1
�r�

given by

�V1
�r� � PM

p�1

�p�r�: �1�

The sample region occupied by the medium where particles

are immersed is denoted by V2 and forms phase 2. It is

described by function �V2
�r� with

�V2
�r� � 1ÿ �V1

�r�: �2�
If we denote the SD of phases 1 and 2 by n1 and n2, the SD

function of the sample reads

nD�r� � n1�V1
�r� � n2�V2

�r� � �n�V1
�r� � n2 �3�

with the SD contrast �n � �n1 ÿ n2�. The scattering intensity

is

I�q� � jAD�q�j2; �4�
where AD�q� is the scattering amplitude de®ned as

AD�q� �
R

exp�iq � r�nD�r� dv: �5�
Consider now the function

Ap�q� �
R

exp�iq � r��p�r� dv: �6a�
It is fully determined by the geometry and the position of

particle p, and will be called the geometrical scattering

amplitude of particle p. Similarly, the geometrical scattering

amplitude of phase 1 will be denoted by AV1
�q� and, owing to

(1) and (6a), it reads

AV1
�q� � PM

p�1

Ap�q�: �6b�

For the scattering amplitude, one obtains

AD�q� � ��n�AV1
�q� � n2�2��3��q�; �7�

where the Dirac function arises from assuming an in®nitely

large sample. After substitution of (7) in (4) and use of (6b),

the scattering intensity becomes

I�q� � ��n�2jAV1
�q�j2 � ��n�2

���� PM
p�1

Ap�q�
����2; for q 6� 0:

�8�
The intensity depends linearly on ��n�2, the scattering

contrast. The shape of I�q� is determined by the location and

the geometry of the particles. As q increases, the asymptotic

behaviour of I�q� will be determined by local features of the

interface between phases 1 and 2, as will be shown in the

following. To this aim, it is however required that q is suf®-

ciently large for the structure functions to be equal to one and,

moreover, that the mean orientation of the particles inside

the sample be approximately constant throughout the time

interval required to collect the intensity. In the following, it

will be assumed that these two conditons are ful®lled.

The asymptotic behaviour of I�q� is immediately obtained

by (8) once we have determined that of Ap�q�, whatever p.

With r � �q̂� r?, � � �q̂ � r� and dv � d�d2r?, (6a) becomes

Ap�qq̂� � R1
ÿ1

d� exp�iq��Ap��; q̂�; �9�

where

Ap��; q̂� � R �p��q̂� r?� d2r?: �10�
Ap��; q̂� is the area of the intersection of particle p with

��q̂; ��, the plane at distance � from the origin and orthogonal

to q̂. According to a general theorem (ErdeÂ lyi, 1958) on

Fourier transforms (FT), the behaviour of Ap�qq̂� at large q

values is determined by the continuity properties of Ap��; q̂�.
Equation (10) shows that these depend on the shape of the

particle. In contrast to paper I, particles are no longer required

to be convex. They must only have ®nite sizes and smooth

boundaries except for possible edges and vertices. The

complications arising from these more general conditions are

discussed by referring to the particle shown in Fig. 1. It is a

Figure 1
A half-torus with radii R0 � 1 and R1 � 1:5. The points PH and PE,
referred to in the text, are the ®rst and the second intersections of axis y
with the toroidal surface, respectively. In particular, PE lies behind the
surface.

1 Actually, nD�r� differs from the true SD both at the phase borders and inside
the phases. The ®rst deviation arises from the fact that the true SD changes
continuously in passing from one phase to another; it can be accounted for by
Ruland's procedure (Ruland, 1971). The second deviation is corrected by
subtracting the so-called background contribution (Luzzati et al., 1961).



half-torus, denoted by T , with radii R0 and R1, R1 being

greater than R0. [The complete torus has its centre of

symmetry at the origin and its C1 axis along z.] The surface of

T has two circular edges, with radius R0 and the centres at

��R1; 0; 0�. Consider direction q̂1 � �0; 1; 0�. Plane ��q̂1; ��
intersects T only if 0 � � � �R0 � R1�. Thus, AT ��; q̂� � 0 if

� < 0 or if � > �R0 � R1�. In the range 0 � � � �R0 � R1�,
AT ��; q̂� changes continuously with � and consists of two

disjoint sets if 0 � � < �R1 ÿ R0�, which join each other at

� � �R1 ÿ R0� (see Fig. 2a). In the remaining interval

��R1 ÿ R0�; �R1 � R0��, AT ��; q̂� is a set that shrinks to a point

as �! �R1 � R0� (see Fig. 2b). Thus, AT ��; q̂� is a continuous

function of � except for � � 0 where it has a ®nite disconti-

nuity. Finite discontinuities of Ap��; q̂� are present only if the

particle surface contains planar subsets orthogonal to q̂. If we

denote the areas of these planar subsets by S1�q̂�; . . . ; Ss�q̂�
and their distances from the origin by �1; . . . ; �s, the discon-

tinuity at the jth of these � values is

Ap���j ; q̂� ÿ Ap��ÿj ; q̂� � ÿ �m̂j � q̂�Sj�q�; �11�
where m̂j denotes the unit normal to the jth planar set of the

particle surface, pointing out of the particle. [Note that m̂j � q̂ in

(11) is equal to either �1 or ÿ1.] It is convenient to write (10)

as

Ap��; q̂� � R �p�r���r � q̂ÿ �� dv; �12�
where the presence of the Dirac � function ensures that only

the points lying on ��q̂; �� contribute to the integral. The �
derivatives of Ap��; q̂�, considered as distributions, can be

evaluated by taking the � derivatives of the integrand (Guel-

fand & Chilov, 1962). Thus, by the identity

d��r � q̂ÿ ��
d�

� ÿ�q̂ � r���r � q̂ÿ �� � ÿr � �q̂��r � q̂ÿ ���

and by the Gauss theorem, one ®nds

A0p��; q̂� � ÿ R
�p

dS �m̂ � q̂���r � q̂ÿ ��; �13�

where the integral is performed over the particle surface �p,

and m̂ is the unit vector orthogonal to dS. At a discontinuity

point, say �j, the contribution of subset Sj (orthogonal to q̂) is

immediately evaluated because the � function can be taken

out of the integral since its argument is constant on Sj. One

®nds

A0p��; q̂� � ÿPs

j�1

�m̂j � q̂�Sj��� ÿ �j� � A0p;C��; q̂� �14�

with

A0p;C��; q̂� � ÿ R
�0p

dS �m̂ � q̂���r � q̂ÿ ��; �15�

where �0p [� �p\f[s
j�1Sjg] denotes the particle surface without

the planar facets orthogonal to q̂. Integrating (9) by parts and

using (14), one gets

Ap�qq̂� � �1=iq�Ps

j�1

exp�iq�j��m̂j � q̂�Sj

� �1=iq� R1
ÿ1

d� exp�iq��A0p;C��; q̂�: �16�

Hence, possible planar subsets of the particle surface, which

are orthogonal to q̂, yield O�qÿ1� asymptotic contributions to

the scattering amplitude along direction q̂ in reciprocal space.

To ®nd the asymptotic behaviour of the remaining integral

on the right-hand side (r.h.s.) of (16), we must study the

continuity properties of A0p;C��; q̂� with respect to �. In (15),

the � function restricts the integral to the points of �0p, which

lie on ��q̂; ��, while �0p, by de®nition, no longer contains the

planar subsets of the particle surface. Thus, the intersection of

�0p with ��q̂; ��, if it exists, can only be a curve denoted by

ÿ��; q̂�, which may consist of disjoint arcs. For simplicity, we

proceed as if ÿ��; q̂� consists of a single arc. In this case,

integral (15) reduces to a curvilinear integral along ÿ��; q̂�.
Owing to the Dirac � function, the integrand of (15) is

certainly continuous at the points of ÿ��; q̂� where the normal

to the in®nitesimal surface element dS is not parallel to

q̂ (Guelfand & Chilov, 1962). Thus, the evaluation of (15)

requires some care only around the points of ÿ��; q̂�, which are

q̂ tangency points. In fact, these points can make the behaviour

of A0p;C��; q̂� discontinuous as �! �i, �i denoting the distance

of the plane, tangent to the particle surface at one of these

points, from the origin. To understand the phenomena
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Figure 2
The curves shown are the sections of the surface depicted in Fig. 1 with
the planes orthogonal to axis y at the distances � given at the top of each
®gure. The cross point of the curve relevant to � � 0:5 in (a) represents
point PH, while the ellipsoidal curves shown in (b) shrink towards PE as
�! 2:5.
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occurring around such points, we refer again to Fig. 1. Here,

points PH and PE denote the two q̂1 tangency points for

q̂1 � �0; 1; 0�. Their distances from the origin are �R1 ÿ R0�
and �R0 � R1�. Put now �1 � �R1 � R0� and �2 � �R1 ÿ R0�.
Around PE, ÿ��; q̂� exists only if � < �1 and it shrinks to a point

as �! �ÿ1 . Thus, in this limit, the integration domain goes to

zero, but the integrand diverges as the normal to dS becomes

parallel to q̂. In x2.1, it will be shown that, provided the

Gaussian curvature of the particle surface at PE be greater

than zero, the opposite behaviours of the integration domain

and of the integrand combine to give a ®nite limit for

A0p;C��; q̂� as �! �ÿ1 . Thus, A0p;C��; q̂� has a ®nite discontinuity

at � � �1. Around PH, ÿ��; q̂� exists in a complete neigh-

bourhood of �2. In fact, for � < �2, ÿ��; q̂� consists of two

disjoint closed curves which merge into a single curve,

presenting the cross point PH, at � � �2 (see Fig. 2a). As

�! �2
�, ÿ��; q̂� consists of a single closed curve which

develops a cross point at � � �2. Then, in both cases, the

integration domain remains ®nite and the singularity of the

integrand, under the assumption that the Gaussian curvature

is smaller than zero, yields a logarithmic singularity for

A0p;C��; q̂� as �! �2, as shown in x2.2. According to mathe-

matical nomenclature, a point P of a surface is called elliptic,

hyperbolic or parabolic depending on whether the Gaussian

curvature, denoted by �G�P�, is greater, smaller or equal to

zero (Smirnov, 1970). If �G�P�> 0, the plane tangent to the

surface at P lies on one side of the surface as in the case of

point PE. If �G�P�< 0, the plane tangent to the surface at P

cuts the surface as in the PH case. If �G�P� � 0, the tangent

plane can either cut or lie on one side of the surface.

2.1. Elliptic q̂ tangency point

This case was discussed in paper I. We shall generalize it to

the case of a particle surface with edges. Consider ®rst an

elliptic q̂ tangency point PE that does not lie on an edge and

assume, for de®niteness, that m̂PE
� �q̂, m̂PE

denoting the

normal to �0p at PE. Then, ÿ��; q̂� exists only for �! �ÿ so

that A0p;C��; q̂� � 0 for � > �. Using the same procedure as

followed in paper I to get (10), one ®nds with �! �ÿ

A0p;C��; q̂� � ÿ2�=��G�PE��1=2 � o: �17�
Here, o denotes a contribution approaching zero as �! �ÿ

and �G�PE� is the value of the Gaussian curvature of the

particle surface at PE. In a neighbourhood of �, one can write

A0p;C��; q̂� � ���m̂PE
� q̂��ÿ���fÿ2�=��G�PE��1=2 � og; �18�

where � is the Heaviside step function. Equation (18) shows

that A0p;C��; q̂� presents a ®nite discontinuity at � � �. By the

theorem reported by ErdeÂ lyi (1958, x2.8), this singularity

contributes to the leading asymptotic behaviour of the FT on

the r.h.s. of (16) with

f2�=��G�PE��1=2g�exp�iq��=q2�: �19�
If m̂PE

� ÿq̂, ÿ��; q̂� exists only for � > � and A0p;C��; q̂� still

behaves as reported on the r.h.s. of (18). With m̂PE
� q̂ � ÿ1,

the leading term of the FT on the r.h.s. of (16) will be equal to

(19) with a negative sign. Combining both results, one

concludes that the leading contribution of an elliptic q̂

tangency point to the asymptotic behaviour of the scattering

amplitude is

Ap�qq̂� � f�2��m̂PE
� q̂��=��G�PE��1=2g�exp�iq��=q2�: �20�

We now consider the case where the particle surface presents

an edge. The equation of the particle surface at the left of the

edge is different from that at the right, so that one can speak of

a left and a right branch of the particle surface. Assume now

that PE is an elliptic q̂ tangency point for one of the surface

branches (say the left one) and that it lies on the edge. In order

to evaluate the behaviour of A0p;C��; q̂� as �! �, we must only

analyse the contribution due to the left branch of the surface.

Close to PE, a portion of ÿ��; q̂� will lie on the left surface only

if � > � or if � < �. For de®niteness, assume that this occurs for

� < �. The considered portion of ÿ��; q̂� is an open curve. Thus,

each of its two ends determines a curve as �! �ÿ, and the two

curves meet each other at PE. Consider now the tangent to

each curve at point PE. (Depending on the chosen curve, the

tangent will be de®ned by a right or left limit.) The two

tangents will form an angle, denoted by �, such that

0<�< 2�. If we remember that the factor 2� in (18) arises

from the integration along a closed contour shrinking to a

point as �! �ÿ, it is clear that an elliptic q̂ tangency point

lying on an edge and the associated surface branch contribute

to the leading asymptotic scattering amplitude as in (20)

provided 2� is substituted by � and �G�PE� refers to the

considered branch of the surface.

2.2. Hyperbolic q̂ tangency point

The discussion of this case is more involved than the elliptic

one because the length of ÿ��; q̂� does not go to zero as one

approaches PH. If � 6� �, the contribution to A0p;C��; q̂� from

the ÿ��; q̂� part within a small neighbourhood of PH exists and

is ®nite. It will be shown that, as �! �, this contribution

behaves as C ln j� ÿ �j, C being an appropriate coef®cient.

Similarly to paper I, consider the orthogonal Cartesian frame

OXYZ with axis Z along q̂ and axes X and Y along the

principal curvature directions of �0p at PH. In this system, the

coordinates of q̂ and PH are �0; 0; 1� and �XH;YH; ��, while the

parametric equation of �0p around PH becomes Z � Z�X;Y�
with Z�XH;YH� � �. Besides, the local approximation of �0p
by its osculating quadric, obtained by expanding Z�X;Y�
around PH up to second-order terms, is

Z � �� �au2 � bv2�=2: �21�
Here we have put u � X ÿ XH, v � Y ÿ YH, a �
@2Z�X;Y�=@X2j, b � @2Z�X;Y�=@Y2j, and the vertical bars

mean that the derivatives are evaluated at PH. [In (21), the

®rst-order derivatives and the mixed second derivative are not

present because the plane tangent to �0p at PH is parallel to

plane XY and because axes X and Y point along the principal

curvature directions.] The value of the Gaussian curvature at

PH is �G�PH� � ab and, by assumption, it is negative. Thus,

either a> 0 and b< 0 or a< 0 and b> 0. For de®niteness, we



consider the ®rst case. Referring to frame OXYZ and using

the local coordinates �u; v� de®ned above, we can write the

parametric equations of �0p as r � r�u; v�, with x � u� XH,

y � v� YH and z � �� �au2 � bv2�=2, in a neighbourhood of

PH suf®ciently small to use (21). By well known formulae of

differential geometry (Smirnov, 1970), one has

dS � �EGÿ F2�1=2 du dv; �22a�
m̂ � �ru � rv�=�EGÿ F2�1=2; �22b�

where

ru � @r=@u � �1; 0; au�; rv � @r=@v � �0; 1; bv�;
E � ru � ru � 1� a2u2; F � ru � rv � abuv;

G � rv � rv � 1� b2v2:

After putting

� � �ÿ �; �22c�
one has

� � r�u; v� � q̂ÿ � � � ÿ �au2 � bv2�=2: �22d�
The contribution to A0p;C��; q̂� [de®ned by (15)] from the part

of ÿ��; q̂� that lies inside the considered neighbourhood of PH

becomes

A0p;C��; q̂� � ÿ R ��ru � rv� � q̂����� du dv: �23�
De®ne new variables �u � u�a=2�1=2 and �v � v�ÿb=2�1=2.

Depending on whether � > 0 or � < 0, � factorizes either

as � � ��� � �v2�1=2 ÿ �u���� � �v2�1=2 � �u� or as � �
��ÿ� � �u2�1=2 ÿ �v���ÿ� � �u2�1=2 � �v�, so as to have positive

radicals in both cases. Consider the case � > 0. One has the

identity

���� � 1

2�� � �v2�1=2
f���� � �v2�1=2 ÿ �u� � ���� � �v2�1=2 � �u�g

�24�
and (23) becomes

A0p;C��; q̂�

� ÿ 2

�ÿab�1=2

Z L

ÿL

��ru � rv� � q̂
2�� � �v2�1=2

����
�
� �ru � rv� � q̂

2�� � �v2�1=2

����
ÿ

�
d�v;

�25a�
where the ®rst and second vertical bars mean that the

numerators are evaluated at �u � �� � �v2�1=2 and at

�u � ÿ�� � �v2�1=2, respectively. Besides, the integration limit L

is chosen so as to have a ®nite subset of ÿ��; q̂� within the

considered neighbourhood of PH. It will be shown below that

the exact value of L is not important. From the relations

reported above (22c), it follows that q̂ � �ru � rv� � ÿ1 aside

from an in®nitesimal correction. Hence, the two terms inside

the integrand are equal and integral (25a) is easily evaluated.

Its value is

2�ÿab�1=2 lnf��� � L2�1=2 � L�=��� � L2�1=2 ÿ L�g: �25b�
Since �! 0�, the leading term is ÿ2�ÿab�1=2 ln �, which, as

noted above, is independent of L. As �! 0ÿ, one considers

the second factorization for �. After performing the changes

�!ÿ�, �u! �v and �v! �u in (24), by the same analysis

reported above one ®nds that the leading term of (23), as

�! 0ÿ, is ÿ2�ÿab�1=2 ln�ÿ��. In conclusion, the leading term

of (23), as one approaches PH from the left or from the right, is

A0p;C��; q̂� � ÿ2j�G�PH�jÿ1=2 ln�j� ÿ �j�; �26�
which, as already anticipated, is logarithmically singular. The

leading asymptotic term of the FT of this contribution has

been obtained by ErdeÂ lyi (1955) and by Jones & Kline (1958).

Using theorems 1 and 2 reported in the Appendix of the latter

paper, one ®nds that the leading asymptotic contribution,

generated by a hyperbolic q̂ tangency point, to the scattering

amplitude is

Ap�qq̂� � ÿ i2�

j�G�PH�j1=2

exp�iq��
q2

: �27�

The geometrical meaning of equation � � 0, with � given by

(22d), is as follows. Both for � < 0 and for � > 0, equation

� � 0 represents the two branches of a hyperbola which

approximates the intersection curve ÿ��; q̂� close to PH and

approaches its asymptotes as �! 0�. This appears evident by

looking at Fig. 2, where the sections of T with some planes,

orthogonal to q̂ � �0; 1; 0� and set at different distances (�)
from the origin, are shown. Point PH is the cross point of the

dotted curve shown in Fig. 2(a), and its coordinates are

�0; 0:5; 0�. Consider the dashed-dotted curve of Fig. 2(a) and

the continuous curve of Fig. 2(b). They were obtained by

taking � � 0:45 and � � 0:54, respectivley. Clearly, both curves

are close to a hyperbola only near PH. Inside a small neigh-

bourhood of PH, one ®nds that, as �! 0:5� (or �! 0�), the

intersection curves become closer to hyperbola � � 0, which

in turn approaches its asymptotes. In fact, the dotted curve

shown in Fig. 2(a) refers to � � 0 and, around PH, it is made up

of two intersecting straight lines. It is also noted that each of

the two integrals on the r.h.s. of (25a) corresponds to an

integration over one branch of the hyperbola, i.e. the left or

the right branch if � < 0, or the upper or the lower branch if

� > 0. In any case, one integrates over that part of the branch

that lies inside the considered neighbourhood of PH. More-

over, the ®rst integral on the r.h.s. of (25a) can be written asZ L

ÿL

�ru � rv� � q̂
2�� � �v2�1=2

����
�

d�v

�
Z 0

ÿL

�ru � rv� � q̂
2�� � �v2�1=2

����
�

d�v�
Z L

0

�ru � rv� � q̂
2�� � �v2�1=2

����
�

d�v:

The two integrals on the r.h.s. are equal. As �! 0, each of

them tends to the integral over that part of the relevant

asymptote which goes from PH to the border of the considered

neighbourhood of PH. The previous remarks also apply to the

second integral present on the r.h.s. of (25a) and make the

evaluation of the contribution arising from a hyperbolic q̂
tangency point, lying on an edge of the particle surface,

straightforward. After orienting the edge, denote the parts of

the particle surface lying on the left and on the right of the

edge by �L and �R, respectively. Assume, for de®niteness,
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that PH be a hyperbolic point of �R. Consider now the plane

tangent to �R at PH, and the straight line tangent to the edge

at PH and oriented as the edge. This oriented straight line

divides the tangent plane into a left and a right half-plane. The

asymptotes of the hyperbola lie in the aforesaid tangent plane.

In the limit �! 0, we must consider only those parts of the

asymptotes that lie on the right half-plane and in a neigh-

bourhood of PH. Leaving aside the exceptional case where the

aforesaid straight line coincides with one asymptote, the

tangent half-plane only contains two half-asymptotes. There-

fore, the leading contributions to A0p;C��; q̂� and Ap�qq̂� are

those given by (26) and (27), divided by two.

2.3. Parabolic q̂ tangency point

By de®nition, this is a point, denoted by PP, of the surface

where the normal is equal to�q̂ and the Gaussian curvature is

equal to zero, i.e. �G�PP� � 0. The distance from the origin to

the plane tangent to the surface at PP will still be denoted by �,
and we shall refer to a Cartesian frame OXYZ de®ned as in

the previous subsections. The parametric equation of �0p
can be written as Z � Z�X;Y� in a neighbourhood of

PP � �XP;YP; ��. Expanding Z�X;Y� around this point, one

®nds

r � q̂ � ÿajX ÿ XPj� ÿ bjY ÿ YPj� ÿ cjX ÿ XPj�1 jY ÿ YPj�1 ;

�28a�
assuming that �0p lies on one side of its tangent plane ��q̂; ��
at PP. Exponents �, �, �1 and �1 are subject to constraints

� � 2; � � 2; �� �> 4 �28bÿ d�
�1 � 2; �1 � 2: �28eÿ f �

These constraints follow from the properties that the plane

tangent to �0p at PP be orthogonal to q̂, that Z�X;Y� be a C2

function and that �G�PP� � 0. As �! �, the behaviour of

integral (15) depends on the values of the exponents and of

the coef®cients in (28a). Only two of the simplest cases will

now be discussed since these results will be used later on. This

discussion also shows how to handle other cases.

Our ®rst example deals with the case where the equation of

�0p depends only on one variable so that, in a neighbourhood

of PP, it can be written as Z � Z�X�. This is the case of a

cylinder resulting from the translation along Y of a closed

curve described by the equation F�X;Z� � 0. Besides, we

assume that the cylinder at PP � �0;YP; �� has

m̂ � q̂ � �0; 0; 1�. By expanding around PP, one gets

r � q̂ � ��1ÿ ajX=�j� � o� with � � 2:

(For instance, in the case of right circular cylinders with radius

�, one has a � 1=2 and � � 2.) Using de®nition (22c), the

argument of the Dirac � function in (15) becomes

� � r � q̂ÿ � � � ÿ a�jX=�j�: �29a�
The Dirac � function requires that � � 0. The solutions of this

equation are

X � ����=a��1=� � o: �29b�

They make sense provided �=a> 0. Thus, A0p;C��; q̂� exists only

if � > 0 or if � < 0, depending on whether a> 0 or a< 0,

respectively. For de®niteness, we consider the case a> 0. We

denote the height and the Y coordinate of the centre of the

cylinder by H and Y0, respectively, and we put u � X and

v � Y � Y0 in (23). As �! 0�, one has �ru � rv� � q̂! 1, and

(15) becomes

A0p;C��; q̂� � ÿ
Z H=2

ÿH=2

dY

Z
����

����dX

d�

����d� � ÿ2

Z H=2

ÿH=2

����dX

d�

����
�

dY:

�29c�
The factor 2 in the last expression accounts for the fact that the

Jacobian jdX=d�j takes the same value at the two roots (29b)

of equation � � 0. By (29a), equation (29c) becomes

A0p;C��; q̂� � ÿ 2H��a��
�jaj1=�

�
�

j�j
���ÿ1�=�

; �30�

where the absolute value of a makes (30) valid also when

a< 0.

Our second example is the case where the expansion of

Z�X;Y�, given by (28a), has 2 � � � �, ab> 0 and c � 0. For

de®niteness, it will be assumed that a> 0 and b> 0. The �
expression is

� � � ÿ ajuj� ÿ bjvj�; �31�
with u � X ÿ XP, v � Y ÿ YP and � � �ÿ �. The roots of the

equation � � 0 are

u � ���� ÿ bjvj��=a�1=�: �32a�
For these to exist, v has to obey

jvj � ��=b�1=�: �32b�
This implies that A0p;C��; q̂� can differ from zero only if b� > 0.

Similar to (29c), integral (23) becomes

A0p;C��; q̂� � ÿ2

Z ����du

d�

����
�

dv:

From (31), one gets jdu=d�j � 1=�a�juj�ÿ1�. Using constraint

(32b) and putting v � ��=b�1=��, the previous integral becomes

A0p;C��; q̂� � ÿ 4

�a1=�b1=��1ÿ1=�ÿ1=�

Z 1

0

�1ÿ ����1ÿ��=� d�:

This can be integrated (Gradshtein & Ryzhik, 1980, equation

3.251.1) in terms of Euler's ÿ function. The ®nal result is

A0p;C��; q̂� � ÿ 4��a��ÿ�1=��ÿ�1=��
��jaj1=�jbj1=�ÿ�1=�� 1=��j�j1ÿ1=�ÿ1=�

; �33�

which also applies when both a and b are negative.

3. Asymptotic behaviour of the scattering intensity

In the previous section, it has been shown that, around a q̂
tangency point, A0p;C��; q̂� shows: (i) a ®nite discontinuity,

given by (18), when the point is elliptic; (ii) a logarithmic

singularity, given by (26), when the point is hyperbolic; and

(iii) an algebraic singularity, as in (30) or (33), when the point



is parabolic. [Note that our gross conclusions are not affected

by the fact that the variety of the behaviours around parabolic

points is richer than the two cases explicitly analysed.] The

contributions to the asymptotic scattering amplitude, arising

from the ®rst two kinds of q̂ tangency points, were already

worked out in xx2.1, 2.2, and are given by (20) and (27). To

evaluate the contribution due to a parabolic q̂ tangency point,

we need to evalute the leading term of the FTs of (30) and

(33). To this aim, we note that both terms have the form

C��a��ÿ ���j�ÿ �j�ÿ1; �34�

and the explicit expressions of C and � are obtained by

comparing (34) with (30) or (33). In particular, � � 1=� in the

®rst case and � � 1=�� 1=� in the second. Since both � and �
are constrained to be larger than two [see (28)], then 0<�< 1.

Assume ®rst that a> 0. Then, a parabolic q̂ point contributes

to the Fourier integral on the r.h.s. of (16) with

R�
ÿ1

d� exp�iq��C��a��ÿ �����ÿ ���ÿ1:

According to the theorem reported by ErdeÂ lyi (1955, x2.8), the

leading asymptotic term of this integral arises from the upper

bound and is Cÿ��� exp�ÿi��=2� exp�iq��=q�. If a< 0, � will be

the lower bound of the integral, and the leading term reads

ÿCÿ��� exp�i��=2� exp�iq��=q�, which differs by a phase

factor from that obtained in the case a> 0. To get the leading

asymptotic contribution to the scattering amplitude (16), the

previous two expressions must be divided by iq. One concludes

that the leading asymptotic term due to a parabolic q̂ tangency

is

sign�a�Cÿ��� expfÿi�sign�a��� 1��=2gexp�iq��=q��1; �35�

which is valid whatever the sign of a. A particle can have

several elliptic, hyperbolic and parabolic q̂-tangency points, as

well as planar subsets orthogonal to q̂. After labelling the

points by indices {, | and ` and the planar subsets by j, and

collecting the previous results, one ®nds the leading asymp-

totic expression of the geometrical scattering amplitude of the

particle, namely

Ap�qq̂� �
X
{

E {
exp�iq�{�

q2
�
X
|

H|
exp�iq�|�

q2

�
X
`

P`
exp�iq�`�

q1��` �
X

j

Sj

exp�iq�j�
q

: �36�

The expressions for coef®cients E {,H| , P` and Sj are obtained

by comparing (36) with (18), (26), (35) and (16), respectively.

By (27), the asymptotic behaviour of AV1
�qq̂�, the total scat-

tering amplitude, is obtained after substituting each index of

summation in (36) with a pair of indices, e.g. { becomes �p; {�
where p labels the sample particles. Finally, the square

modulus of this expression yields the asymptotic leading term

of the scattering intensity. One ®nds

I�qq̂� � ��n�2
�X

p;{

jEp;{j2
q4
�
X

p;|

jHp;|j2
q4

�
X
p;`

jPp;`j2
q2�2�p;`

�
X

p;j

jSp;jj2
q2

�
; �37�

where only the contributions resulting from the product of

each term with its complex conjugate have been retained. In

fact, it is reasonable to expect that the sum of the cross terms,

which are oscillatory, averages to zero for most of the samples.

The O�qÿ4� contributions of (37) can more compactly be

written as

4�2��n�2
q4

X
p;j

1

j�G;p;j��q̂�j �38�

by equations (20), (27) and (16). In equation (38), the sum

runs over all the points, labelled by �p; j�, of the sample

interface where the normal is equal to q̂ or to ÿq̂, and

j�G;p;j��q̂�j denotes the absolute value of the Gaussian

curvature at the jth point of the pth particle. The O�qÿ2�
contribution takes the form

��n�2 Pj S2
j �q̂�

q2
; �39�

where Sj�q̂� denotes the area of the jth planar subset of the

sample interface, orthogonal to q̂. The coef®cients in front of

the terms, asymptotically decreasing as qÿ� with 2<�< 4, are

also related to the local structure of the interface, since they

can be expressed in terms of coef®cients a, b, � and so on,

present in the local expansion (28a) of the surface. For

instance, in the cylinder-like case, by combining (35) and (30)

one has

jPp;`j2 �
4H2�2��ÿ1�=�ÿ2�1=��

�2jaj2=� ;

where, for notational simplicity, we avoided adding indices

�p; `� on the r.h.s.

4. Finite angular resolution and conclusion

In x3, we have obtained the general expression of the

asymptotic leading term for anisotropic intensities along an

arbitrary direction q̂ of reciprocal space. As these intensities

refer to a precisely de®nite geometrical direction, they are not

observable since the angular resolution is ®nite in any

experiment. Consider a detector pixel under the (mean)

scattering vector direction q̂0 with an opening solid angle

�
�q̂0� with respect to the sample position. The intensity

collected by this pixel is

�I�
�qq̂0� �
R

�
�q̂0�
I�qq̂� dq̂: �40�

Only the asymptotic analysis of �I�
�qq̂0� is physically mean-

ingful. To perform such an analysis, we need to know the

asymptotic behaviour of �I�
�qq̂0�. This is obtained by substi-

tuting (37) in (40). If we consider ®rst the O�qÿ4� contribu-

tions, (40) becomes
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�I�
�qq̂0� �
4�2��n�2

q4

X
p

Z
�
�q̂0�

X
`

dq̂

j�G;p`��q̂�j : �41�

According to a basic result of differential geometry (Smirnov,

1970), the value of the integral is the area of that part of the p

particle surface which has its normals within the considered

solid angle �
�q̂0�. Denote this area by Sp��
�q̂0��. The total

area of all the portions of the sample interface with the

normals within �
�q̂0� is

S��
�q̂0�� �
P

p

Sp��
�q̂0��; �42�

and from (41) one gets

�I�
�qq̂0� �
4�2��n�2S��
�q̂0��

q4
: �43�

Equation (43) also holds in the presence of parabolic q̂

tangency points, provided these form a set with area equal to

zero and �ÿ1
G �q̂� is an integrable function, these conditions

ensuring the existence of the integral in (41). A simple

example is the cuboidal particle discussed in Appendix A. In

this case, the set of the parabolic q̂ tangency points consists of

the three curves resulting from the intersections of the

cuboidal surface with the three planes x � 0, y � 0 and z � 0.

The area of this set is clearly zero since, as evident from (52),

the order of the zeros of �G�q̂� with respect to q̂x and q̂y is

���ÿ 2�=��ÿ 1��< 1 on these lines. Thus, these singularities

are integrable.

However, the presence of such singularities makes the value

of S��
�q̂0��, relevant to a �
�q̂0� containing the directions

associated with parabolic q̂ tangency points, larger than that

relevant to a �
�q̂0� which does not contain such directions.

These conclusions apply to any parabolic q̂ tangency point and

one concludes that asymptotic terms decreasing as qÿ�, with

2<�< 4, are not observable experimentally.

Finally, we discuss the contribution to �I�
�qq̂0� resulting

from the presence of planar facets on the sample interface. For

simplicity, we refer to a cube. The leading asymptotic beha-

viour can be obtained by taking the limit �!1 of the

asymptotic behaviour of the �I�
�qq̂0� relevant to a cuboid

with parameter � [see (46)]. Since �I�
�qq̂0� asymptotically

decreases as qÿ4 if � is ®nite (for a different proof of this

property we refer to Appendix B), the Porod coef®cient will

be 4�2��n�2 times the limit of S���
�q̂0�� for �!1, where

subscript � means that the quantity refers to the cuboid

characterized by this parameter. Clearly, in the limit �!1,

S���
�q̂0�� becomes equal to the sum of the areas of the cube

faces which have their normals within �
�q̂0�. Thus, the

Porod coef®cient is still that reported on the r.h.s. of (43), but

it should be noted that the smaller the size of the detector

pixels the more sensitive the dependence of S���
�q̂0�� on q̂0.

In the case of a cube, the observed asymptotic behaviour will

be O�qÿ4� only close to the directions orthogonal to the faces

of the cube. Along other directions of reciprocal space, the

decrease will be faster than qÿ4 and this fact explains the

origin of the streaks often observed in anisotropic SAS

intensities (see e.g. Kompatscher et al., 2000). In conclusion,

the generalization of Porod's law to anisotropic samples

formed by particles of arbitrary shapes follows from (43) after

dividing this equation by �
�q̂0� and reads

�I�
�qq̂0�
�
�q̂0�

� 4�2��n�2S��
�q̂0��
q4�
�q̂0�

: �44�

With �
�q̂0� � 4�, the left side of (44) is the isotropic

component of the scattering intensity while S�4�� is twice the

area of the sample interface. In this way, Porod's law is

recovered. When �
�q̂0� � 4�, the de®nition of S��
�q̂0��,
as the area of that part of the sample interface which has the

normals within �
�q̂0�, becomes important. In fact, the

dependence of S��
�q̂0�� on q̂0 can be observed, in favour-

able circumstances, from Porod plots of the intensity at various

®xed q̂0, with the result that the heights of the Porod plateaus

will be higher (lower) along those directions where the

interfaces are ¯atter (more bent).

APPENDIX A

Transmission electron microscopy of alloys that have under-

gone heat treatment often shows precipitates shaped as

parallelepipeds with round edges tending to become sharper

as particle growth proceeds. The surface of these particles is

conveniently parametrized by the expression (Schneider et al.,

2000)

jx=aj� � jy=bj� � jz=cj� � 1 with � � 2: �45�
Here, a, b and c are the maximal half-lengths of a particle

along axes x, y and z, while parameter � describes the

roundness of the particles. In fact, (45) with � � 2 is the

equation of an ellipsoid with semi-axes a, b and c. As �
increases, surface (45) tends to develop planar regions at the

axis ends as well as edges of increasing sharpness. In the limit

�!1, (45) reduces to fjxj � a; jyj< b; jzj< cg,
fjxj< a; jyj � b; jzj< cg and fjxj< a; jyj< b; jzj � cg, which

are the equations of a right parallelepiped. Scaling coordinates

x, y and z by a, b and c, we may convert (45) into

jxj� � jyj� � jzj� � 1: �46�
The shape of this surface will be called cuboidal and the

particle cuboid. Equation (46) has a cubic symmetry, and can

be studied in the region

0 � y � x � z: �47�
Here, (46) can uniquely be solved with respect to z. The

solution reads

z � z�x; y� � �1ÿ x� ÿ y��1=�: �48�
Let r1 � �x; y; z�x; y�� denote the position vector of a point of

the cuboidal surface in region (47). At this point, the unit

vector orthogonal to the cuboidal surface is

m̂�x; y� � 1

�EGÿ F2�1=2
��x=z��ÿ1; �y=z��ÿ1; 1� �49�

and the Gaussian curvature reads



�G�x; y� � ��ÿ 1�2
z2�EGÿ F2�2

�xy

z2

��ÿ2h
1� x�

z�
� y�

z�

i
: �50�

Expressions (49) and (50) are given in terms of the Cartesian

coordinates of the point. The coordinates of the point of the

cuboidal surface where m̂ � q̂, q̂ being an arbitrary unit vector,

are easily determined as follows. [For simplicity, we assume

that q̂ lies in the angular sector de®ned by (47). The other

cases are recovered by an appropriate permutation of coor-

dinates and changes of signs.] By (49), the requirement m̂ � q̂

can be written as

��x=z��ÿ1; �y=z��ÿ1; 1� � �q̂ � ��q̂x; q̂y; q̂z�;
where � � �EGÿ F2�1=2. In this way, one gets

� � q̂ÿ1
z ; x � z

�q̂x

q̂z

�1=��ÿ1�
; y � z

�q̂y

q̂z

�1=��ÿ1�
:

After substituting these expressions of x and y in (48), the

coordinates of the point of the surface where m̂ � q̂ are

x � q̂1=��ÿ1�
x

D1=�
; y � q̂1=��ÿ1�

y

D1=�
; and z � q̂1=��ÿ1�

z

D1=�
; �51aÿ c�

where

D � �q̂�=��ÿ1�
x � q̂

�=��ÿ1�
y � q̂

�=��ÿ1�
z �: �51d�

The substitution of (51a±d) into (50) yields the following

expression for the Gaussian curvature in terms of q̂:

�G�q̂� � ��ÿ 1�2D���2�=��q̂xq̂yq̂z���ÿ2�=�ÿ1: �52�

Equations (52) and (38) allow us to get the leading term

expression of the scattering intensity of a cuboid along the

directions of reciprocal space where (52) is not equal to zero.

For completeness, we work out the leading terms along the

`singular' directions, i.e. the values of q̂ where �G�q̂� � 0. From

(50), it immediately follows that, in the region (47), �G is equal

to zero at the points having position vectors

r1 � �x; 0; z�x; 0�� with 0 � x � 2ÿ1=�;

and forming the arc PQ shown in Fig. 3. In order to determine

the behaviour of A0p;C��; q̂� around these points, it is ®rst noted

that point P must be analysed separately from the other points

lying on the arc PQ. In fact, the order of the zero of �G is

2��ÿ 2� at P, and ��ÿ 2� at the remaining points of PQ. At

P � �0; 0; 1�, one has q̂ � q̂0 � �0; 0; 1�. From (48), it follows

that q̂0 � r � 1ÿ �x� � y��=�, which, in a complete neigh-

bourhood of P, becomes

q̂0 � r � 1ÿ �jxj� � jyj��=�:
Its comparison with (28a) shows that we are in the case

2 � � � � with a � b � 1=� (and ab> 0). By result (33), the

leading behaviour of A0p;C��; q̂0� is

A0p;C��; q̂0� � ÿ
4����ÿ2�1=����2ÿ2��=�

ÿ�2=���1ÿ2=�
: �53�

Furthermore, for the remaining points of PQ, we need to

expand (48) around �x0; 0� with x0 6� 0. Thus, setting

x � x0 � X and y � Y , (48) becomes

z � �1ÿ x�0 �1� X=x0�� ÿ jYj��1=�:
Expanding around �x0; 0� and recalling that z0 � �1ÿ x�0 �1=�,

one ®nds

z � z0

n
1ÿ

�x0

z0

�� X

x0

ÿ �ÿ 1

2

�x0

z0

��h
1�

�x0

z0

��i�X

x0

�2

ÿ 1

�

�jYj
z0

��
� . . .

o
: �54�

From (54), it follows that

r � q̂ � �ÿ aX2 ÿ bjYj� � . . . �55�
with � � q̂xx0 � q̂zz0 and

a � q̂z��ÿ 1�
2z0

�x0

z0

��ÿ2h
1�

�x0

z0

��i
�56a�

b � q̂z=�z�ÿ1
0 : �56b�

From (55), one gets

� � r � q̂ÿ � � � ÿ aX2 ÿ bjYj�:
The comparison of this expression with (31) yields � � 2,

� � �. Substituting these values in (33) yields the leading term

of A0p;C��; q̂� around the points lying on the arc �PQ�, i.e.

A0p;C��; q̂� � ÿ 2����ÿ�1=2�ÿ�1=��
�jaj1=2jbj1=�ÿ�1=2� 1=�����ÿ2�=2�

: �57�

Here, a and b are given by (56a) and (56b), and they can be

expressed in terms of q̂ by (51a±d). In conclusion, (53) refers

to the directions de®ned by the axes of the cuboid, while (57)
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Figure 3
Visualization of the cuboidal particle de®ned by equation (46) with
� � 3. In the ®gure, the bold arc is the arc PQ referred to in the text with
its left end P lying at the top of the surface.
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applies to the remaining directions contained in the three

`equatorial' sections (reminder of the cubic symmetry of the

particle). Writing (53) and (57) in the form (34) and using

relations (35) and (37), one ®nds that the leading term of the

form factor of a cuboid is

I�qq̂0� �
32��n�2�4�1ÿ��=�ÿ4�1=��

q2�1�2=�� �58�

along the axes of reciprocal space and

I�qq̂� � 8��n�2ÿ2�1=2�ÿ2�1=��
�2jajjbj2=�q3�2=�

; �59�

along the other singular directions. It is noted that the expo-

nents of q in (58) and (59) span the intervals [2, 4] and [3, 4],

respectively, as � ranges in �2;1�.

APPENDIX B

A different proof is now given of the property that the leading

asymptotic term of the scattering intensity of a homogeneous

cube, after being integrated on a small solid angle centred on

the direction orthogonal to one of the faces, is O�qÿ4�. The

scattering intensity from a cube with edges of unit length, faces

along the Cartesian planes and scattering contrast equal to

one is

F�q� �
Y3

j�1

�
sin�qj=2�

qj=2

�2

� 8
Y3

j�1

1ÿ cos�qj�
q2

j

; �60�

where q1 is the component of q along the x axis and so on.

Take now q̂0 � �0; 0; 1�. From (60), it follows that

F�qq̂0� �
2�1ÿ cos q�

q2
; �61�

so that F�qq̂0� asymptotically behaves as predicted by (39).

Integrating F�q� on a small solid angle having q̂0 as symmetry

axis and 2�0 as opening angle yields

�F�
�q̂0��qq̂0� �
64

q6

Z �0

0

sin � d�

Z �=4

0

d'

�
1ÿ cos�q cos ��

cos2 �

�
� �1ÿ cos�q sin � cos '���1ÿ cos�q sin � sin '��

sin4 � cos2 ' sin2 '
:

�62�
In terms of the new integration variables X and Y ,

X � q sin � cos ' �63a�
Y � q sin � sin '; �63b�

(62) becomes

32

q4

Z
R

dX dY

�
1ÿ cos X

X2

��
1ÿ cos Y

Y2

�
�
�

1ÿ cosfq�1ÿ �X2 � Y2�=q2�1=2g
�1ÿ �X2 � Y2�=q2�3=2

#
; �64�

where R denotes the portion of the circle X2 � Y2 � q2 sin2 �0

contained in the ®rst quadrant of plane XY. Each expression

inside the large square brackets of (64) is continuous and non-

negative. [This is true also for the last factor owing to the

constraint on the variables.] By the second theorem of the

mean for integrals, (64) becomes

32C�q; �0�
q4

Z
R

dX dY

�
1ÿ cos X

X2

��
1ÿ cos Y

Y2

�
�65�

with

C�q; �0� �
�

1ÿ cosfq�1ÿ � �X2 � �Y2�=q2�1=2g
�1ÿ � �X2 � �Y2�=q2�3=2

#
; �66�

� �X; �Y� being a suitable point internal to R and continuous

on q and �0. The ®rst condition ensures that

0< � �X2 � �Y2� � q2 cos2 �0 so that C�q; �0� cannot diverge.

Thus, the factor in front of integral (65) cannot decrease more

slowly than qÿ4. However, coef®cient C�q; �0� cannot tend to

zero as q!1 because the denominator cannot diverge or

the square root in the argument of the cosine function cannot

approach zero owing to the reported constraint on � �X2 � �Y2�.
Thus, (65) at large q behaves as qÿ4 if the integral is ®nite and

different from zero. This property is easily proved observing

that each factor of the integrand is non-negative and that the

integration domain increases with q. By the ®rst condition, the

integral must be strictly positive and by the second its value is

smaller than that obtained by letting R!1. Hence,Z
R

dX dY

�
1ÿ cos X

X2

��
1ÿ cos Y

Y2

�
<

�Z 1
0

dX

�
1ÿ cos X

X2

��2

� ��=2�2;
where the last equality is obtained by the residue theorem.

Combining this result with (65), one concludes that

�F�
�q̂0��qq̂0� � �8�2=rq4�C�q; �0�:
In conclusion, the angular average of the form factor of a cube

over a small solid angle centred on a `singular' q̂ direction

yields an O�qÿ4� behaviour.
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